

ALTOCAD CHAPITRE 06 CORNIERES Dessiner les différents profils sur un même document Autocad Exercice 1 : Cornières à angles vifs **Exercice 2** : Cornières à ailes égales et coins arrondis Masse par mètre Kg Masse par Dir ions(mm) Dimensions(mm) Section Série Section d Ix dx cm³ dy Ε nètre K Α В Ε R cm2 cm² cm 16 20 2,5 0,579 0,74 0 3 4 0,88 1,13 0,60 0,28 0 25 16 3 1,43 3 0,683 0,87 4 1,12 0,72 0,45 20 0 30 3 5 1,36 1,74 0,84 0,65 2,5 0,736 0,94 AILES ÉGALES 30 20 0 4 5 1,78 2.27 0,88 0,85 3 0,871 1,11 35 3 1,59 2,03 0,97 0,92 25 0,932 1,19 2,5 35 0 3,5 4 1,84 2,35 0,99 1,06 25 3 1,41 1,107 35 4 5 2,67 2,10 1,00 1,18 30 2,5 1,128 1,44 0 40 4 6 3,08 1,12 1,55 2,42 G = C d q30 3 1,342 1,71 40 5 3,79 6 2,98 1,16 1,91 $R_1 = R/2$ 0 45 7 2,20 4,5 3,06 3,90 1,26 25 10 3 0,754 0,96 45 0 5 7 3,38 4,30 1,28 2,43 25 15 50 3 0,871 1,11 0 5 7 3,77 4,80 1,40 3,05 25 17 0,775 0,99 50 2,5 5,69 7 0 6 4.47 1,45 3,61 25 17 0 50 7 6,56 3 0,918 1,17 7 5,15 1,49 4,16 25 20 0 60 3 0,989 1,26 6 8 5,42 6,91 1,69 5,29 60 30 20 8 7,09 3 1,107 1,41 0 8 9,03 1,77 6,89 0 70 9,40 7 9 7,38 35 20 1,97 8,41 3 1,225 1,56 80 0 8 12,27 10 9,63 2,26 INÉGALES 40 20 12,58 3 1,342 1,71 90 0 15,52 9 11 12,2 2,54 17,93 40 30 1,85 2,75 1,452 0 100 10 12 15.0 19,15 2,82 24.62 45 30 2,75 AILES 1,560 1,99 0:SÉRIE PRINCIPALE 100 12 12 17,9 22,71 2,90 29,12 50 30 2,75 -:SÉRIE SECONDAIRE 1,668 2,12 0 120 13 21,6 12 27,54 3,40 42,74 60 30 2,75 1,884 2,40 120 15 13 33,93 0 26,7 3,51 52,43 70 30 3 2,284 2,91 150 0 15 16 33,8 43,02 4,25 83,52 75 30 3 2,402 3,06 150 18 16 51,03 40,1 0 4,37 98,74 30 80 180 3,5 2,926 3,73 0 18 18 48,6 61,91 5,10 144,7 F 90 30 180 3,5 3,201 4,08 20 18 53,7 68,35 5,18 0 159,4 30 200 100 0 18 60,0 3,5 3,476 4,43 20 76,35 5,68 199,1 200 30 110 18 0 24 71,1 90,59 5,84 235,2 3,5 3,750 4,78 Exercice 3 : Cornières à ailes inégales et coins arrondis Exercice 4 : Profils à Té à angles vifs G = cdgr = 0.5 R0: SÉRIE PRINCIPALE SÉRIE SECONDAIRE d1 x dx Masse Dimensions (mm) Dimensions (mm) Masse Section Profils Section d 1 l x mètre d 2 ly par mètre Série B Ε н cm² Kg d x dy Séri Α В Ε R 20 20 0,87 1,11 cm 2 cm 3 Ka сm сm c m 3 25 25 1,27 1,63 3,5 30 20 3 0 4 1,12 1,43 0,99 0,50 0,62 0,29 COURANT 30 30 4 1,75 2,24 EGALES 35 20 1,82 0 3,5 4 1,43 1,23 0,46 0,94 0,36 35 35 2,31 2,95 4,5 40 25 4 4 1,93 2,46 0,62 0,62 1,36 1,47 40 40 45 30 5 2,94 3,75 0 4 2,24 2,86 1,48 0,74 1,91 0,91 S AILES 0 5 2,76 1,52 4 3,52 0,78 2,35 1,11 25 25 2,5 0,93 1,19 4 0 50 30 30 30 5 5 3,78 1,73 3 1,34 1,71 2,96 0,74 2,86 1,11 ALLEGES 0 60 40 35 35 5 6 3,76 4,79 3 1,57 2,01 1,96 0,97 4,25 2,02 0 6 6 4,46 5,68 2,00 1,01 5,03 2,38 40 40 3,04 4 2,38 0 70 50 6 6 5,40 6,88 2,24 1,25 7,04 3,81 0 7 6 6,24 7,95 2,28 1,29 8,12 4,38 S 30 35 4 1,91 244 COURANT 35 40 INEGALES 3 17 80 50 6 6,79 8,65 4,5 2,49 c 7 2,69 1,22 10,4 4,42 40 50 0 80 3,14 4 00 60 8 5 7 7,36 2,51 1,52 9,38 10,7 6,34 0 8 8 8.34 10,60 2,55 1,56 12,2 7,16 30 AILES 35 3 1,46 1,86 S 0 90 70 8 8 9,60 12,23 2,80 1,81 15,7 9,90 35 40 2,16 3 1,69 0 100 80 8 9 12,15 15,5 3,05 2,10 22,0 14,5 EGES 25 40 3 1,46 1,86 ALI 40 35 0 120 3 1,69 2,16 11 19,1 80 10 15,0 3,92 1,95 34,1 16,2 40 45 17,8 4,00 0 12 11 22,7 2,03 4 2,54 3,24 40,4 19,1 150 0 90 10 12 18,2 23,2 5,00 2,04 53,3 21,0 11 12 19,9 25,3 5,03 2,07 58,1 22,8 12 12 21,6 27,5 5,08 2,12 63,3 24,8 6.3 ERP GEORGES GLYNEMER - LYON SECTION DESSIN - ALAIN APARICIO

ALTOCAD

CHAPITRE 06

Profilés

Exerc	ice 9	: Pro	fils	IPN							Exercice 10 : Profil HE										
G = C	d g			BI R	PROFIL HE			H	B	A	E	R	Section cm 2	lx dx cm3	$\frac{ly}{dy}_{cm3}$						
$R = E$ $\frac{1}{x} - \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$												100	A R	96	10.0	5	8	12	21,2 26	73	27
		F	Pente 14	%			M	120	106	12	20	12	53,2	190	75						
				Ē	в		_1				120	A B	114 120	120 120	5 6, 5	9 11	12 12	25,3 34	106 144	38 53	
Dimensions (m.m.) Masse Moment												м	140	126	12,5	21	12	66,4	288	112	
Profils		-				par	Section cm ²	$\frac{1x}{dx}$	$\frac{1y}{dx}$	de torsion		140	A	133	140	5,5	8,5	12	31,4	155	56
	н	В	A	E	R1	Kg		cm3	cm3	cm 4			M	140 160	140	13	12	12	43 80.6	216	157
80	80	42	3,9	5,9	2,3	5,95	5,95 7,6	19,5	3,00	0,89			A	152	160	6	9	15	38,8	220	77
100	100	50	4,5	6,8	2,7	8,32	10,6	34,2	34,2 4,88 1,64		160	В	160	160	8	13	15	54,3	311	111	
120	120	58	5,1	7,7	3,1	1,2	14,2	54,7	7,41	2,78	14 1		м	180	166	14	23	15	97,1	566	212
140	140	66	5,7	8,6	3,4	14,4	18,2	81,9	10 7	4,40		180	A	171	180	6	9,5	15	45,3	294	103
160	160	74	6,3	9,5	3,8	17,9	22,8	117	14,8	6,70	B u	100	M	200	186	14,5	24	15	113,3	748	277
180	100	02	6.0	10.4		21.0	27.0	161	19.8	9.8	<u>xG</u>		A	190	200	65	10	18	53,8	389	134
200	200	02	0,9	10,4	71'	21,3	27,5	214	26.0	13.9	A >	200	в	200	200	9	15	18	78,1	570	200
200	200	90	⁷ 1	122	4,5	20,3	396	278	331	192			м	220	206	15	25	18	131,3	967	354
240	240	106	0,1	12,2	5.0	26.2	46.1	354	417	25.7		220	A	210	220	7	11	18	64,3	515	178
240	240	113	9,4	14.1	5.6	41,9	53,4	442	51,0	34,4		220	M	220	226	15,5	26	18	149,4	1 2 2 0	444
200					-1-			540	61.2	45.5			A	230	240	7,5	12	21	76,8	675	231
280	280	119	10,1	15,2	6 ₁ 1	48,0	61,1	542	72.0	45,5		240	В	240	240	10,0	17	21	106	938	327
300	300	125	10,8	10,2	6,5	54,2	09,1	053	12,2	30,3			M	270	248	18	32	21	199,6	1800	657
320	320	131	11,5	17,3	6,9	61,1	11,8	782	0.041	14,0		260	R	250 260	260	7,5	125	24	86,8	836	282
340	340	13/	12,2	18,3	7,3	68,1	80,8	923	98,4	92,9			M	290	268	18	32,5	24	219,6	2160	780
360	360	143	13	19,5	7,8	76,2	97,1	1090	114	118			A	270	280	8	13	24	97,3	1 010	340
400	400	155	14,4	21,6	8,6	92,6	118	1460	149	175		280	B	280	280	10,5	18	24	131,4	1380	471
450	450	170	16,2	24,3	9,7	115	147	2040	203	274			M	310	288	18,5	33	24	240,2	2550	914
500	500	185	18	27,0	10,8	141	180	2750	268	412		300	A	290	300	8,5	14	27	112,5	1260	421
L			1	1	1		1		I			000	M	340	310	21	39	27	303,1	3480	1 250

6.5

Dessiner tous les profilés sur une même page Autocad. Bien organiser chaque profilé dans votre page. Ecrire le nom du profilé au dessus de chaque dessin. Faire les hachures.